Diversity-Based Boosting Algorithm
نویسنده
چکیده
Boosting is a well known and efficient technique for constructing a classifier ensemble. An ensemble is built incrementally by altering the distribution of training data set and forcing learners to focus on misclassification errors. In this paper, an improvement to Boosting algorithm called DivBoosting algorithm is proposed and studied. Experiments on several data sets are conducted on both Boosting and DivBoosting. The experimental results show that DivBoosting is a promising method for ensemble pruning. We believe that it has many advantages over traditional boosting method because its mechanism is not solely based on selecting the most accurate base classifiers but also based on selecting the most diverse set of classifiers. Keywords—Artificial Intelligence; Classification; Boosting; Diversity; Game Theory.
منابع مشابه
Using Diversity with Three Variants of Boosting: Aggressive, Conservative, and Inverse
We look at three variants of the boosting algorithm called here Aggressive Boosting, Conservative Boosting and Inverse Boosting. We associate the diversity measure Q with the accuracy during the progressive development of the ensembles, in the hope of being able to detect the point of “paralysis” of the training, if any. Three data sets are used: the artificial Cone-Torus data and the UCI Pima ...
متن کاملCombining Bagging and Boosting
Bagging and boosting are among the most popular resampling ensemble methods that generate and combine a diversity of classifiers using the same learning algorithm for the base-classifiers. Boosting algorithms are considered stronger than bagging on noisefree data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, i...
متن کاملCombining Bagging and Additive Regression
Bagging and boosting are among the most popular resampling ensemble methods that generate and combine a diversity of regression models using the same learning algorithm as base-learner. Boosting algorithms are considered stronger than bagging on noisefree data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in t...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملEvaluation of Data Mining Algorithms for Detection of Liver Disease
Background and Aim: The liver, as one of the largest internal organs in the body, is responsible for many vital functions including purifying and purifying blood, regulating the body's hormones, preserving glucose, and the body. Therefore, disruptions in the functioning of these problems will sometimes be irreparable. Early prediction of these diseases will help their early and effective treatm...
متن کامل